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ABSTRACT. The parallel effective I/O bandwidth benchmark (b_eff_io) is aimed at producing a
characteristic average number of the I/O bandwidth achievable with parallel MPI-I/O appli-
cations exhibiting various access patterns and using various buffer lengths. It is designed so
that 15 minutes should be sufficient for a first pass of all access patterns. First results of the
b_eff_io benchmark are given for the IBM SP, Cray T3E, Hitachi SR 8000, and NEC SX-5 sys-
tems, and a discussion follows about problematic issues of our current approach. We show how
a redesign of our time-driven approach allows for rapid benchmarking of I/O bandwidth with
various compute partition sizes. Next, we present how implementation specific file hints can be
enabled selectively on a per access pattern basis, and we illustrate the benefit that hints can
provide using the latest version of the IBM MPI-IO/GPFS prototype.
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1. Introduction

Crucial to the ultimate useful performance of a cluster computing environment is
the seamless transfer of data between memory and a filesystem. Most cluster appli-
cations would benefit from a decent parallel filesystem that allows the transfer of data
to occur using standard I/O calls such as those implemented in the MPI-2 standard
MPI-I/O [MPI 97]. However, since there is a variety of data storage and access pat-
terns that span the gamut of cluster applications, designing a benchmark to aid in the
comparison of filesystem performance is a difficult task. Indeed, many parallel I/O
benchmarks and benchmarking studies characterize only the hardware and file system
performance limits [DET 98, HAS 98, HO 99, JON 00, KOE 98]. Often, they focus
on determining under which conditions the maximal file system performance can be
reached on a specific platform. Such results can guide the user in choosing an optimal
access pattern for a given machine and filesystem, but do not generally consider the
needs of the application over the needs of the filesystem. Other benchmarks, such as
BTIO [CAR 92], are combining numerical kernels with MPI-I/O. TheMPI-I/O bench-
mark described in [LAN 98] uses low-level benchmarks and kernel style benchmarks.
This project emphasizes the development of a test suite for MPI-I/O together with I/O
performance issues.

In this paper, we describe the design and implementation of a parallel I/O bench-
mark useful for comparing filesystem performance on a variety of architectures, in-
cluding, but not limited to cluster systems.

This benchmark, referred to as the parallel effective I/O bandwidth benchmark
(b_eff_io in short), is aimed at:

a) getting detailed information about several access patterns and buffer lengths,
b) measuring a characteristic average number for the I/O bandwidth achievable

with parallel MPI-I/O applications.

b_eff_io examines “first write”, “rewrite”, and “read” accesses, strided (individual and
shared pointers) and segmented collective accesses to one shared file per application,
as well as non-collective access to one file per process. The number of parallel access-
ing processes is also varied, and wellformed I/O is compared with non-wellformed
I/O. On systems meeting the rule that the total memory can be written to disk in 10
minutes, the benchmark should not need more than 15 minutes for a first pass of all
access patterns.

This paper is structured as follows. In Section 2, we describe the basic design
criteria that influenced our choice of appropriate I/O patterns. In Section 3, we give
the specific definition of the benchmark. Results of the benchmark on a variety of
platforms are described in Section 4. In Section 5, we discuss a few problematic
issues related to the benchmark definition. In Section 6, we show how our time-driven
approach can be applied to allow for rapid benchmarking of various compute partition
sizes. In Section 7, we present how MPI-I/O file hints can be selectively enabled
on a per access pattern basis in an attempt to improve the parallel I/O bandwidth
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achieved for that access pattern, and we illustrate this technique by describing our
current experimentation using the latest IBM MPI-I/O prototype on an SP system.
Finally, we mention future work and conclude the paper.

2. Benchmark Design Considerations

We begin by considering the common I/O patterns of parallel applications. To
standardize I/O requests, the MPI Forum introduced the MPI-I/O interface [MPI 97]
that allows the user to make these requests using a convenient interface similar to
standard MPI calls. Furthermore, MPI-I/O allows for optimization of accesses to the
underlying filesystem (see for example [DIC 98, PRO 00, THA 99, THA1]), while
retaining the uniformity of the basic MPI-I/O interface across platforms.

Based on this background, the parallel effective I/O bandwidth benchmark, should
measure different access patterns, report these detailed results, and should calcu-
late an average I/O bandwidth value that characterizes the whole system. This goal
is analogous to the Linpack value reported in TOP500 [TOP500] that characterizes
the computational speed of a system, and also to the effective bandwidth bench-
mark (b_eff), that characterizes the communication network of a distributed system
[RAB1, SOL 99, SOL1]. Indeed, the experience with the design of the b_eff bench-
mark is influential on this I/O benchmark design.

However, the major difference between b_eff and b_eff_io is the magnitude of
the bandwidth. On well-balanced systems in high performance computing we expect
an I/O bandwidth which allows for writing or reading the total memory is approxi-
mately 10 minutes. For the communication bandwidth, the b_eff benchmark shows
that the total memory can be communicated in 3.2 seconds on a Cray T3E with 512
processors and in 13.6 seconds on a 24 processor Hitachi SR 8000. An I/O benchmark
measures the bandwidth of data transfers between memory and disk. Such measure-
ments are highly influenced by buffering mechanisms of the underlying I/O middle-
ware and filesystem details, and high I/O bandwidth on disk requires, especially on
striped filesystems, that a large amount of data be transferred between such buffers
and disk. Therefore an I/O benchmark must ensure that a sufficient amount of data is
transferred between disk and the application’s memory. The communication bench-
mark b_eff can give detailed answers in about 2 minutes. Later we shall see that
b_eff_io, our I/O counterpart, needs at least 15 minutes to get a first answer.

2.1. Multidimensional Benchmarking Space

Often, benchmark calculations sample only a small subspace of a multidimen-
sional parameter space. One extreme example is to measure only one point, e.g., a
communication bandwidth between two processors using a ping-pong communication
pattern with 8 Mbyte messages, repeated 100 times. For I/O benchmarking, a huge
number of parameters exist. We divide the parameters into 6 general categories. At
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the end of each category in the following list, a first hint about handling these aspects
in b_eff_io is noted. The detailed definition of b_eff_io is given in section 3.

1. Application parameters are (a) the size of contiguous chunks in memory, (b)
the size of contiguous chunks on disk, which may be different in the case of scat-
ter/gather access patterns, (c) the number of such contiguous chunks that are accessed
with each call to a read or write routine, (d) the file size, (e) the distribution scheme,
e.g., segmented or long strides, short strides, random or regular, or separate files for
each node, and (f) whether or not the chunk size and alignment are wellformed, e.g., a
power of two or a multiple of the striping unit. For b_eff_io, 36 different patterns are
used to cover most of these aspects.

2. Usage aspects are (a) how many processes are used and (b) how many parallel
processors and threads are used for each process. To keep these aspects outside of the
benchmark, b_eff_io is defined as a maximum over these aspects and one must report
the usage parameters used to achieve this maximum.

3. The major programming interface parameter is specification of which I/O in-
terface is used: Posix I/O buffered or raw, special filesystem I/O of the vendor’s file
system, or MPI-I/O. In this benchmark, we use only MPI-I/O, because it should be
a portable interface of an optimal implementation on top of Posix I/O or the special
filesystem I/O.

4. MPI-I/O defines the following orthogonal aspects: (a) access methods, i.e., first
writing of a file, rewriting, or reading, (b) positioning method, i.e., explicit offsets,
individual or shared file pointers, (c) coordination, i.e., accessing the file collectively
by a group of processes or noncollectively, (d) synchronism, i.e., accessing the file in
a blocking mode or in a nonblockingmode. Additional aspects are: (e) whether or not
the files are open unique, i.e., the files will not be concurrently opened by other open
calls, and (f) which consistency is chosen for conflicting accesses, i.e., whether or not
atomic mode is set. For b_eff_io there is no overlap of I/O and computation, therefore
only blocking calls are used. Because there should not be a significant difference
between the efficiency of using explicit offsets or individual file pointers, only the
individual and shared file pointers are benchmarked. With regard to (e) and (f),unique
and nonatomic are used.

5. Filesystem parameters are (a) which filesystem is used, (b) how many nodes or
processors are used as I/O servers, (c) how much memory is used as bufferspace on
each application node, (d) the disk block size, (e) the striping unit size, and (f) the
number of parallel striping devices that are used. These aspects are also outside the
scope of b_eff_io. The chosen filesystem, its parameters, and any usage of non-default
parameters must be reported.

6. Additional benchmarking aspects are (a) repetition factors, and (b) how to cal-
culate b_eff_io, based on a subspace of the parameter space defined above using max-
imum, average, weighted average, or logarithmic averages.

To reduce benchmarking time to an acceptable amount, one can normally only mea-
sure I/O performance at a few grid points of a 1-5 dimensional subspace. To analyze
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more than 5 aspects, usually more than one subspace is examined. Often, the com-
mon area of these subspaces is chosen as the intersection of the area of best results
of the other subspaces. For example in [JON 00], the subspace varying the number
of servers is obtained with segmented access patterns, and with well-chosen block
sizes and client:server ratios. Defining such optimal subspaces can be highly system-
dependent and may therefore not be as appropriate for b_eff_io designed for a variety
of systems. For the design of b_eff_io, it is important to choose the grid points based
more on general application needs than on optimal system behavior.

2.2. Criteria

The benchmark b_eff_io should characterize the I/O capabilities of the system.
Should we use, therefore, only access patterns, that promise a maximum bandwidth?
No, but there should be a good chance that an optimized implementation of MPI-
I/O should be able to achieve a high bandwidth. This means that we should measure
patterns that can be recommended to application developers.

An important criterion is that the b_eff_io benchmark should only need about 10
to 15 minutes. For first measurements, it need not run on an empty system as long as
concurrently running other applications do not use a significant part of the I/O band-
width of the system. Normally, the full I/O bandwidth can be reached by using less
than the total number of available processors or SMP nodes. In contrast, the commu-
nication benchmark b_eff should not require more than 2 minutes, but it must run on
the whole system to compute the aggregate communication bandwidth. Based on the
rule for well-balanced systems mentioned in Section 2 and assuming that MPI-I/Owill
attain at least 50 percent of the hardware I/O bandwidth, we expect that a 10 minute
b_eff_io run can write or read about 16% of the total memory of the benchmarked
system. For this estimate, we divide the total benchmark time into three intervals
based on the following access methods: initial write, rewrite, and read. However, a
first test on a T3E900-512 shows that based on the pattern-mix, only about the third
of this theoretical value is transferred. Finally, as a third important criterion, we want
to be able to compare different common access patterns.

3. Definition of the Effective I/O Bandwidth

The parallel effective I/O bandwidth benchmark measures the following aspects:

– a set of partitions;
– the access methods initial write, rewrite, and read;
– the pattern types (see Fig. 1):

(0) strided collective access, scattering large chunks in memory to/from disk,
(1) strided collective access, but one read or write call per disk chunk,
(2) noncollective access to one file per MPI process, i.e., to separate files,
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Figure 1. Access patterns used in b_eff_io. Each diagram shows the data accessed by
oneMPI-I/O write call.

(3) same as (2), but the individual files are assembled to one segmented file,
(4) same as (3), but the access to the segmented file is done collectively;

files are not reused across pattern types;
– the contiguous chunk size is chosen wellformed, i.e., as a power of 2, and non-

wellformed by adding 8 bytes to the wellformed size;
– different chunk sizes, mainly 1 kB, 32 kB, 1 MB, and the maximum of 2 MB

and 1/128 of the memory size of a node executing one MPI process.

The entire list of access patterns is shown in Tab. 1. The column “type” refers
to the pattern type. The column “l” defines the size of the contiguous chunks that
are written from memory to disk and vice versa. The value MPART is defined as
max(2MB, memory of one node / 128). This definition should reflect applications that
write a significant part of the total memory to disk, but expecting that this is done by
several I/O accesses, e.g., by writing several matrices to disk. The smaller chunk sizes
should reflect the writing of fixed-sized short (1 kB), middle (32 kB) and long (1 MB)
wellformed and non-wellformed (8 bytes longer) data-sets. The column “L” defines
the size of the contiguous regions accessed at once in memory. In case of pattern
type (0), non-contiguous file views are used. If l is less than L, then in each MPI-
I/O read/write call, the L bytes accessed in memory are scattered/gathered to/from
chunks of l bytes at various locations on disk. In all other cases, a contiguous chunk
written/read on disk has the same size as a contiguous region accessed in memory.
This is denoted by “:=l” in the L column. U is a time unit.

Each access pattern is benchmarked by repeating the pattern for a given amount of
time. This time is given by the allowed time for a whole partition (e.g., T =10minutes)
multiplied by U/

∑
U/3, as given in the table. A value of U=0 indicates that this

pattern is executed only once to hide from the benchmark initialization effects of the
subsequent patterns. The time-driven approach allows one to limit the total execution
time. The total amount of data written to disk is not limited by the chunk sizes. It
is only limited by T , the time allowed (= scheduled) for this benchmark, and by the
disk-bandwidth of the system that is measured. For pattern types (3) and (4) a fixed
segment size must be computed before starting the pattern of these types. Therefore,
the time-driven approach is substituted by a size-driven approach, and the repeating
factors are initialized based on the measurements for types (0) to (2).
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type l L U

0 1 MB 1 MB 0
MPART :=l 4

1 MB 2 MB 4
1 MB 1 MB 4
32 kB 1 MB 2
1 kB 1 MB 2
32 kB +8B 1 MB + 256B 2
1 kB +8B 1 MB + 8kB 2
1 MB +8B 1 MB + 8B 2

type l L U

1 1 MB :=l 0
MPART :=l 4

1 MB :=l 2
32 kB :=l 1
1 kB :=l 1
32 kB +8B :=l 1
1 kB +8B :=l 1
1 MB +8B :=l 2

type l L U

2 1 MB :=l 0
MPART :=l 2

1 MB :=l 2
32 kB :=l 1
1 kB :=l 1
32 kB +8B :=l 1
1 kB +8B :=l 1
1 MB +8B :=l 2

3/4 see type=2 ∑
U = 64

Table 1. Details of access patterns used in b_eff_io.

The b_eff_io value of one pattern type is defined as the total number of trans-
ferred bytes divided by the total amount of time from opening till closing the file. The
b_eff_io value of one access method is defined as the average of all pattern types with
double weighting of pattern type 0.1 The b_eff_io value of one partition is defined
as the average of the access methods with the weights 25% for initial write, 25% for
rewrite, and 50% for read. The b_eff_io of a system is defined as the maximum over
any b_eff_io of a single partition of the system, measured with a scheduled execution
time T of at least 15 minutes. This definition permits the user of the benchmark to
freely choose the usage aspects and enlarge the total filesize as desired. The mini-
mum filesize is given by the bandwidth for an initial write multiplied by 300 sec (=
15 minutes / 3 access methods). The benchmark can be used on any platform that
supports parallel MPI-I/O. On clusters of SMP nodes, the user of the benchmark can
decide how many MPI processes should run on each node. The final b_eff_io value is
defined as the maximum over all such usage aspects. These aspects must be reported
together with the b_eff_io result. For using this benchmark to compare systems as in
the TOP 500 list [TOP500] and in the TOP 500 cluster list [TFCC], more restrictive
rules are necessary. They are described in Sect. 6.

1. The double weighting of pattern type 0 and the double weighting of the large chunk sizes
(see U = 2 and 4 in Tab. 1) is used to reflect that this benchmark should measure the I/O
performance of large systems in high performance computing which typically should be used
with large I/O chunks or collective I/O (=pattern type 0).
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Figure 2. Comparison of b_eff_io for different numbers of processes on T3E and SP,
measured partially without pattern type 3.

4. Comparing Systems Using b_eff_io

First, we test b_eff_io on two systems, the Cray T3E900-512 at HLRS/RUS in
Stuttgart and an RS 6000/SP system at LLNL called “Blue Pacific.” The T3E is an
MPP system, the IBM SP is a cluster of SMP nodes. In Sect. 4.1, we will also compare
other systems from NEC, Hitachi and IBM, and in Sect. 7, we will show results on an
IBM ASCI White system.

On the T3E, we use the tmp-filesystem with 10 striped Raid-disks connected via a
GigaRing for the benchmark. The peak-performance of the aggregated parallel band-
width of this hardware configuration is about 300 MB/s. The LLNL results presented
here are for an SP system with 336 SMP nodes each with four 332 MHz processors.
Since the I/O performance on this system does not increase significantly with the
number of processors on a given node performing I/O, all test results assume a single
thread on a given node is doing the I/O. Thus, a 64 processor run means 64 nodes as-
signed to I/O, and no requested computation by the additional 64*3 processors. On the
SP system, the data is written to the IBM General Parallel File System (GPFS) called
blue.llnl.gov:/g/g1which has 20 VSD I/O servers. Recent results for this system show
a maximum read performance of approximately 950MB/sec for a 128 node job, and a
maximum write performance of 690MB/sec for 64 nodes [JON 00].2 Note that these
are the maximum values observed, and performance degrades when the access pattern
and/or the node number is changed.

For this data on both platforms pre-releases (Rel. 0.x) of b_eff_io were used that
had a different weighting of the patterns (type 0, type 1, etc). Therefore the values pre-

2. Upgrades to the AIX operating system and underlying GPFS software may have altered these
performance numbers slightly between measurements in [JON 00] and in the current work.
Additionally, continual upgrades to AIX and GPFS are bringing about improved performance
overall.
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sented in this section cannot be directly compared with the results in the next section.
MPI-I/O was implemented with ROMIO [THA 99, THA1] but with different device
drivers. On the T3E, we have modified the MPI Release mpt.1.3.0.2, by substituting
the ROMIO/ADIO Unix filesystem driver routines for opening, writing, and reading
files. The Posix routines were substituted by the asynchronous counter part, directly
followed by the wait routine. This combination of asynchronous write (or read) and
wait is not semantically identical to the Posix (synchronous) write or read. The Posix
semantics does not allow on the T3E that the I/O generated by several processes can
be done in parallel on several striping units, i.e., the I/O accesses are serialized. With
the asynchronous counterpart, a relaxed semantics is used which allows parallel disk
access from several processes [RAB3]. On the RS 6000/SP Blue Pacific machine,
GPFS [GPF 00] is used underneath the MPICH version of MPI with ROMIO. Figure
2 shows the b_eff_io values for different partition sizes and different values of T , the
time scheduled for benchmarking one partition. All measurements were taken in a
non-dedicated mode.

Besides the different absolute values that correlate to the amount of memory in
each system, one can see very different behavior. For the T3E, the maximum is
reached at 32 application processes, with little variation from 8 to 128 processes, i.e.,
the I/O bandwidth is a global resource. In contrast, on the IBM SP the I/O bandwidth
tracks the number of compute nodes until it saturates. In general, an application only
makes I/O requests for a small fraction of the compute time. On large systems, such
as those at the High-Performance Computing Center in Stuttgart and the Computing
Center at Lawrence Livermore National Laboratory, several applications are sharing
the I/O nodes, especially during prime time usage. In this situation, I/O capabilities
would not be requested by a significant proportion of the CPU’s at the same time.
“Hero” runs, where one application ties up the entire machine for a single calculation
are rarer and generally run during non-prime time. Such hero runs can require the full
I/O performance by all processors at the same time. The right-most diagram shows
that the RS 6000/SP fits more to this latter usage model. Note that GPFS on the IBM
SP is configurable, i.e., number of I/O servers and other tunables, and the performance
on any given SP/GPFS system depends on the configuration of that system.

4.1. Detailed Insight

In this section, we present a detailed analysis of each run of b_eff_io on a partition.
For each run of b_eff_io, the I/O bandwidth for each chunk size and pattern is reported
in a table that can be plotted as in the graphs shown in each row of Figure 3. The
three diagrams in each row show the bandwidth achieved for the three different access
methods: writing the file the first time, rewriting the same file, and reading it. On each
graph, the bandwidth is plotted on a logarithmic scale, separately for each pattern type
and as a function of the chunk size. The chunk size on disk is shown on a pseudo-
logarithmic scale. The points labeled “+8” are the non-wellformed counterparts of the
power of two values. The maximum chunk size varies across systems because it is
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(a) 128 nodes on the “Blue Pacific” RS 6000/SP at LLNL, T =30min, b_eff_io = 63 MB/s
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(c) 16 nodes on the Hitachi SR 8000 at HLRS, T = 15min, b_eff_io = 41 MB/s
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Figure 4. 128 nodes on the “Blue Pacific” RS 6000/SP at LLNL, with ROMIO.

chosen to be proportional to the usable memory size per node to reflect the scaling
up of applications on larger systems. On the NEC SX-5, a reduced maximum chunk
size was used. Except on the NEC SX-5, we have used b_eff_io releases 1.x. On the
IBM SP, a new MPI-I/O prototype was used [PRO 00]. This prototype is used for the
development and improvement of MPI-I/O. Performance of the actual product may
vary.

The four rows compare the I/O bandwidth on four different systems from IBM,
Cray, Hitachi and NEC. The IBM SP and the Cray T3E are described in the previous
section. The NEC SX-5 system at HLRS is a shared memory vector system. It is a
cluster of two 16 processor SMP nodes with 32+48 GB memory, but the benchmark
was done only on a single SMP node. It has four striped RAID-3 arrays DS 1200,
connected by fibre channel. The NEC Supercomputer File System (SFS) is used.
It is optimized for large-sized disk accesses. The filesystem parameters are: 4 MB
cluster size (=block size), and if the size of an I/O request is less than 1 MB, then a 2
GB filesystem-cache is used. On the NEC SX-5, we use MPI/SX 10.1. The Hitachi
SR8000 at HLRS is a 16 node system, that clusters SMP nodes each with 8 pseudo-
vector CPUs and with 8 GB of memory.

First, notice that access pattern type 0 is the best on all platforms for small chunk
sizes on disk. Thus all MPI-I/O implementations can effectively handle the 1 MB
memory regions that are given in each MPI-I/O call to be scattered to disk or gathered
from disk. In all other pattern types, the memory region size per call is identical to the
disk chunk size, i.e., in the case of 1 kB or 32 kB, only a small or medium amount of
data is accessed per call.

Note that due to the logarithmic scale, a vertical difference of only a few mil-
limeters reflects an order of magnitude change. Comparing the wellformed and non-
wellformed measurements, especially on the T3E, there are huge differences. Also
on the T3E, we see a large gap between write and read performance in the scattering
pattern type.
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On the IBM SP MPI-I/O prototype, one can see that segmented non-collective
pattern type 3 is also optimized. On the other hand, the collective counterpart is more
than a factor of 10 worse. Such benchmarking can help to uncover advantages and
weakness of an I/O implementation and can therefore help in the optimization process.
Figure 4 and the first row of Figure 3 compare two different MPI-I/O implementations
on top of the GPFS filesystem. ROMIO is used in the benchmarks shown in Figure
4. One can see that with ROMIO writing and reading of separate files result in best
bandwidth values. IBM MPI-I/O prototype clearly shows in Figure 3 better results
for access pattern type 0 and for access pattern type 3. File hints, introduced by the
MPI-2 standard with the info argument, can be used in the IBM MPI-I/O prototype
[PRO 00] in order to further optimize I/O performance for speficic access patterns.
These hints are necessarily pattern specific, since if they worked for all pattern types,
they would naturally be a part of the standard MPI-I/O implementation. In Section 7,
we present how the next release of b_eff_io will enable the selective use of MPI-I/O
implementation specific file hints on a per access pattern basis, and we illustrate the
impact of using such hints by providing early results using the latest version of the
IBM MPI-I/O prototype [PRO 01] on an ASCI White system.
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Figure 5. Comparison of b_eff_io for various numbers of processes at HLRS and
LLNL, measured partially without pattern type 3. b_eff_io releases 1.x were used,
except for the NEC system (rel. 0.6).

Figure 5 compares the final b_eff_io results on these four platforms. Values for
other partition sizes are added. It should be noticed, that the IBM results in this fig-
ure can not be compared with the results in Figure 2, because for Figure 5, ROMIO
and b_eff_io rel. 0.x are used instead of the IBM MPI-I/O prototype and b_eff_io
rel. 1.1. In particular, b_eff_io rel. 0.x used an inappropriate weighting to compute the
bandwidth average. Consequently, the absolute values were not comparable between
different platforms. This problem was fixed in rel. 1.0. With the IBM MPI-I/O proto-
type, the bad effective I/O bandwidth for small partition sizes (as shown with ROMIO
in Figure 2) could also be fixed.
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In general, our results show that the b_eff_io benchmark is a very fast method to
analyze the parallel I/O capabilities available for applications using the standardized
MPI-I/O programming interface. The resulting b_eff_io value summarizes parallel
I/O capabilities of a system in one significant I/O bandwidth value.

5. Discussion of b_eff_io

In this section, given the primary results of the benchmark, we reflect on some
details of its definition. The design of the b_eff_io tries to follow the rules about MPI
benchmarking defined by Gropp and Lusk [GRO 99], as well as Hempel [HEM 99],
but there are a few problematic issues.

Normally, the same experiment should be repeated a few times to compute amax-
imum bandwidth. To achieve a very fast I/O benchmark suite, this methodology is
substituted by weighted averaging over a medium number of experiments, i.e., the
access patterns. (We note that in the case of the IBM SP data, repeated calculation
of b_eff_io on different days produced nearly identical answers). The weighted av-
eraging is done for each experiment after calculating the average bandwidth over all
repetitions of the same pattern. Any maximum is calculated only after repeating the
total b_eff_io benchmark itself. For this maximum, one may vary the number of MPI
processes (i.e., the partition size), the schedule time T , and filesystem parameters.

The major problem with this definition is that one may use any schedule time T
with T > 10minutes. First experiments on the T3E have shown that the b_eff_io
value may have its maximum for T =10 minutes. This is likely since for any larger
time interval, the caching of the filesytem in the memory is reduced.

Indeed, caching issuesmay be problematic for I/O benchmarks in general. For ex-
ample, Hempel [HEM 00] has reported that on NEC SX-5 systems other benchmark
programs have reported a bandwidth significantly higher than the hardware peak per-
formance of the disks. This is caused by a huge 4 GB memory cache used by the
filesytem. In other words, the measurement is not able to guarantee that the data was
actually written to disk. To help assure that data is written, we can addMPI_File_sync.
The problem is, however, that MPI_File_sync influences only the consistency seman-
tics. Calling MPI_File_sync after writing to a file guarantees that any other process
can read this newly written data, but it does not guarantee that the data is stored on a
permanent storage medium, i.e., that the data is written to disk. There is only one way
to guarantee that the MPI-I/O routines have stored 95% of the written data to disk.
One must write a dataset 20 times larger than the memory cache length of the filesys-
tem. This can be controlled by verifying that the datasize accessed by each b_eff_io
access method is larger than 20 times of the filesystems’ cache length.

The next problem arises from the time driven approach of the b_eff_io bench-
mark. Each access pattern is repeated for a given time interval, which is Tpattern =
T/3∗U/ΣU for each pattern. The termination condition must be computed after each
call to a write or read routine. In all patterns defining a collective fileview or using
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collective write or read routines, the termination condition must be computed globally
to guarantee that all processes are stopped after the same iteration. In the current ver-
sion, this is done by computing the criterion only at a root process. The local clock
is read after a barrier synchronization. Then, the decision is broadcasted to all other
nodes. This termination algorithm is based on the assumption that a barrier followed
by a broadcast is at least 10 times faster than a single read or write access. For exam-
ple, the fastest access on the T3E for L= 1 kB regions is about 4 MB/s, i.e., 250µs per
call. In contrast, a barrier followed by a broadcast needs only about 60µs on 32 PEs,
which is not 10 times faster than a single I/O call. Therefore, this termination algo-
rithm should be modified in future versions of our benchmark. Instead of computing
the termination criterion at the end of each iteration, a geometric series of increasing
repeating factors should be used: The repeating factor used in the first iteration must
be small, because otherwise the execution time of the first iteration may be larger than
the allowed time (= U/

∑
U/3, see Sect. 3) on some slow platforms. After bench-

marking this first iteration, the repeating factor can be increased to reduce the relative
benchmarking overhead induced by the time measurements and barrier operation at
the end of each iteration.

Pattern types 3 and 4 require a predefined segment size LSEG (see Figure 1). In
the current version, for each chunk size “l”, a repeating factor is calculated from the
measured repeating factors of pattern types 0–2. The segment size is calculated as the
sum of the chunk sizes multiplied by these repeating factors. The sum is rounded up
to the next multiple of 1 MB. This algorithm has two drawbacks:

1. The alignment of the segments are multiples of 1 MB. If the striping unit is
more than 1 MB, then the alignment of the segments is not wellformed.

2. On systems with 32 bit integer/int datatype, the segment size multiplied by
the number of processes (n) may be more than 2 GB, which may cause internal errors
inside of the MPI library. Without such internal restrictions, the maximum segment
size would be 16/n GB, based on a 8 byte element type. If the segment size must be
reduced due to these restrictions, then the total amount of data written by each process
does not fit any longer into one segment.

On large MPP systems, it may also be necessary to reduce the maximum chunk
size (MPART ) to 2/nGB or 16/nGB. This restriction is necessary for pattern types 0,
1, 3 and 4.

Another aspect is the mode used to open the benchmark files. Although we want
to benchmark unique mode, i.e., ensure that a file is not accessed by other appli-
cations while it is open by the benchmark program, MPI_MODE_UNIQUE_OPEN
must not be used because it would allow an MPI-I/O implementation to delay all
MPI_File_sync operations until the closing of the file.
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6. The Time-Driven Approach

Figure 2 shows interesting results. There is a difference between the maximum
I/O bandwidth and the sampled bandwidth for several partition sizes. In the redesign
from release 0.x to 1.x, we have incorporated that the averaging for each pattern type
can not be done by using the average of the bandwidth values for all chunk sizes. The
bandwidth of one pattern type must be computed as the total amount of transferred
data divided by the total amount of time used for all chunk sizes. With this approach, it
is possible to reduce caching effects and to allow a total scheduled time of 30 minutes
for measuring all five patterns with the three access directions (write, rewrite, read)
for one compute partition size.

The b_eff_io benchmark is proposed for the Top 500 Clusters list [TFCC]. For
this, the I/O benchmark must be done automatically in 30 minutes for three differ-
ent compute partition sizes. This can be implemented by reorganizing the sequence
of the experiments. First, all files are written with the three different compute parti-
tion sizes, followed by rewriting, and then by all reading. Additionally, the rewriting
experiments only use pattern type 0, to reduce the amount of time needed for each
partition size without losing the chance to compare the initial write with the rewrite
pattern. Therefore, the averaging process has also to be slightly modified. The aver-
age for writing patterns is done by weighting all 5 initial write patterns and the one
rewrite pattern each with a factor of one. This implies that pattern type 0 is weighted
double, as it is also done with the read pattern types. The b_eff_io value is then de-
fined as the geometric mean of the writing and reading average bandwidth values. The
geometric mean is used to guarantee that both bandwidth values (writing and reading)
influence the final result in an appropriate way, even if one of the two values is very
small compared to the other one. The arithmetic mean was not chosen, because it
would always report a value larger than 50% of the higher bandwidth value, even if
the other bandwidth is extremely low.

Remembering that the b_eff_io benchmark has two goals, (a) to achieve a de-
tailed insight into the performance of several I/O patterns, and (b) to summarize these
benchmarks in one specific effective I/O bandwidth value, we offer the option to run
this b_eff_io release 2.0 benchmark for a longer time period and with all rewriting
patterns included. In this case, the scheduled time is enlarged to 45 minutes. The av-
eraging process is not changed, i.e., the additional rewriting patterns do not count for
the b_eff_io number, but with this option the benchmark can still be used to compare
all initial write patterns with their rewrite counterparts.

For using b_eff_io as an additional metric in the Top 500 Clusters list, it is also
necessary to define three partition sizes to get comparable results and to reduce the
total time to run this benchmark on a given platform. The three partition sizes, i.e., the
number of nodes of a cluster or the number of CPUs of an MPP or SMP system, are
given by the following formulas:

– small = 2 ** ( round ( log2(SIZE) * 0.35 ) )
– medium = 2 ** ( round ( log2(SIZE) * 0.70 ) )
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– large = SIZE,

with SIZE = size of MPI_COMM_WORLD and the following exceptions: small=1 if
SIZE==3, and medium=3 if SIZE==4.3 The three partition sizes should allow to ana-
lyze the behavior of the system when applications try to make I/O by using different
numbers of CPUs as shown in Fig. 2 and in Sect. 4. The size ofMPI_COMM_WORLD
should reflect the total cluster system. If the system is used on a cluster of SMP nodes,
it must be reported how many CPUs per node were used to run this benchmark.

7. The Influence of File Hints

The MPI-I/O interface allows for the specification of file hints to the implemen-
tation so that an optimal mapping of the application’s parallel I/O requests to the un-
derlying filesystem and to the storage devices below can be done. First benchmark
tests with b_eff_io have shown a significant difference in the behavior of two different
MPI-I/O implementations on top of the same filesystem. IBM’s prototype implemen-
tation shows in the first row of Fig. 3 an optimum with the access pattern type 0, while
ROMIO yields the best results with the access pattern type 2 (Fig. 4). IBM Research
[PRO 00, PRO 01] developed an MPI-I/O prototype, referred to as MPI-IO/GPFS and
using GPFS as the underlying file system, in order to investigate how file hints can
be used to optimize the performance of various parallel I/O access patterns. They
demonstrate important benefit of using file hints for specific access patterns and ac-
cess methods (reading vs. writing).

We present here how the b_eff_io benchmark can be enhanced in order to en-
able the use of implementation specific MPI-I/O hints on a per access pattern type
basis. We first describe our methodology. Then, we detail our on-going experimen-
tation aimed at applying this methodology on the ASCI White RS 6000/SP system
at Lawrence Livermore National Laboratory, using the latest version of IBM’s MPI-
IO/GPFS prototype. Preliminary results from this experimentation are then presented
and demonstrate how the use of hints can lead to improved parallel I/O performance
(i.e., higher b_eff_io numbers).

7.1. Support for File Hints

The support for file hints can be done with an additional options file, which speci-
fies file hints to be set at file open time for each pattern type and each access method.
Additionally, for each disk chunk size used, separate hints can be given. For some
pattern type, these size dependent hints may be set together with the definition of an
additional fileview.

3. The three values (35%, 70%, and 100%) are motivated as a (nearly) linear splitting of the
total number in the logarithmic scale. The zero value (i.e. 20 = 1 CPU) is omitted, because
large parallel systems are normally not dedicated for serial applications.
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Figure 6. GPFS block allocation used byMPI-IO/GPFS in data shipping mode (using
the default stripe size)

The usage of such file hints is automatically reported together with the benchmark
results, allowing the user to get additional information about the optimal usage of the
MPI-I/O implementation for specific access patterns, access methods, and disk chunk
sizes.

7.2. Experimentation with IBM’s MPI-IO/GPFS Prototype

The foundation of the design of MPI-IO/GPFS is the technique referred to as data
shipping. This technique prevents GPFS file blocks to be accessed concurrently by
multiple tasks, possibly residing on separate nodes. Each GPFS file block is bound to
a single I/O agent, which is responsible for all accesses to this block. For write oper-
ations, each task distributes the data to be written to the I/O agents according to the
binding scheme of GPFS file blocks to I/O agents. I/O agents in turn issue the write
calls to GPFS. For reads, the I/O agents read the file first, and ship the data read to
the appropriate tasks. The binding scheme implemented by MPI-IO/GPFS consists in
assigning the GPFS file blocks to a set of I/O agents according to a round-robin strip-
ing scheme, illustrated in Figure 6. I/O agents are also responsible for combining data
access requests issued by all participating tasks in collective data access operations.

On a per open file basis, the user can define the stripe size used in the binding
scheme of GPFS blocks to I/O agents, by setting file hint IBM_io_buffer_size. The
stripe size also controls the amount of buffer space used by each I/O agent in data
acccess operations. Its default size is the number of bytes contained in 16 GPFS file
blocks.

The user can enable or disable the MPI-IO data shipping feature, by setting file
hint IBM_largeblock_io to “false” or “true”, respectively. Data shipping is enabled
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by default. When it is disabled, tasks issue read/write calls to GPFS directly. This
saves the cost of transferring data between MPI tasks and I/O agents, but risks GPFS
file block ping-ponging across nodes if tasks located on distinct nodes contend for
GPFS file blocks in read-write or write-write shared mode (since GPFS performs co-
herent client caching across nodes). In addition, collective data access operations are
implemented as noncollective operations when data shipping is disabled.

Therefore, it is recommended to disable data shipping on a file only when accesses
to the file are performed in large chunks or when tasks access large disjoint partitions
of the file. In such cases, MPI-IO coalescing of the I/O requests of a collective data
access operation cannot provide benefit and GPFS file block access contention is not
a concern.

For these reasons, it seems natural to set the IBM_largeblock_io hint to true if the
access pattern is segmented (like for access pattern types 2, 3, and 4). For scattering
access pattern types 0 and 1, it also seems natural to set IBM_largeblock_io to true
for larger values of l (e.g., 1MB and MPART ), and leave it to false for smaller val-
ues of l (e.g., less than 1MB). Finally, in the latter case (pattern types 0 and 1, and
smaller values of l), it is certainly interesting to experiment with various values for
the IBM_io_buffer_size hint, one below the default value (e.g., a size of 4 GPFS file
blocks), and one above the default value (e.g., a size of 64 GPFS file blocks). To use
different file hints for the different patterns and chunk sizes, the hint value must be set
to “switchable” on file open. The described hints must be specified when the file view
is set for each pattern.

MPI-I/O-GPFS allows also to define the hint IBM_sparse_access, which can be
set to true if the access pattern is collectively sparse (this does not apply to any pattern
type used by b_eff_io); by default, the value of this hint is false. This hint is not used
in the b_eff_io benchmark.

Our current experimentation is performed using IBM MPI-IO/GPFS on an ASCI
White RS 6000/SP testbed system at Lawrence Livermore National Laboratory. This
IBM SP system is composed of 67 SMP nodes each consisting of 16 375MHz Power3
processors. There are 64 compute nodes, 1 login node, and 2 dedicated GPFS server
nodes. Each node has 8 GB of memory. The GPFS configuration uses a GPFS file
block size of 512 KB and has a pool of 100 MB on each of the nodes. It uses two
VSD servers. Each VSD server serves 12 logical disks (RAID5 sets). The filesystem
is comprised of 24 logical disks, of about 860 GB each. The transfer rate of the disks
integrated as one system is approximately 700 MB/sec.

For these tests, a partition of 16 nodes is used with 4 MPI processes per node.
b_eff_io 2.0 prototype is used. Two sets of file hints are used. The first set uses all
default (IBM_largeblock_io= false and IBM_io_buffer_size= 8MB) file hint values.
This is our baseline. The second set has the IBM_largeblock_io hint set to true. For
pattern type 2 (separated files), the mode MPI_MODE_UNIQUE_OPEN is removed
for both measurements. The third set has again the IBM_largeblock_io hint set to true
and IBM_io_buffer_size hint set to the default (8 MB) for all patterns, except on the
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Access set IBM_ scatter shared sepa- seg- seg- weighted
of large- rate mented coll average
hints block_ type 0 type 1 type 2 type 3 type 4

io MB/s MB/s MB/s MB/s MB/s MB/s
write baseline false 197 188 104 338 13 173

second true 284 277 435 541 524 391
third mixed 397 282 423 533 502 422

rewrite baseline false 190 172 83 186 11 139
second true 197 244 241 228 431 256
third mixed 449 265 234 297 297 332

read baseline false 122 130 96 408 11 148
second true 483 346 609 586 590 516
third mixed 441 282 579 554 544 473

average baseline false 157 155 95 335 12 152
second true 362 303 473 485 534 420
third mixed 432 278 454 485 472 425

Table 2. Summary of the effect of hints on the total bandwidth on the ASCI White
testbed.

set of IBM_largeblock_io b_eff_io
hints MB/s
baseline false (default) 159.5
second true 440.8
third mixed 451.7

Table 3. b_eff_io without and with IBM_largeblock_io hint on the ASCIWhite testbed.

pattern types scatter and shared with the chunk sizes 1 kB, 1 kB+ 8 bytes, 32 kB, and
32 kB+8 bytes, where IBM_largeblock_io= false and IBM_io_buffer_size= 2MB is
used.4 T is chosen to be 30 minutes per set of file hints.

7.3. Results with Hints Enabled

The results are plotted in Figure 7, Table 2, and Table 3. In Figure 7, we can
compare the baseline benchmarks (without hints) with the results for the second and
third set of hints. The first row (a) compares the benchmark results for the pattern
types 0 (scatter). We can see that the second set5improves the results for the large
chunk sizes whereas we can see that for the chunk sizes less than 1 MB, the base-

4. For this set of hints, the hints must be set to switchable when opening the file – it takes
the default value on opening the file, and any subsequent call to MPI_FILE_SET_VIEW or
MPI_FILE_SET_INFO allows to switch it to true/false as often as required.
5. IBM_largeblock_io = true and IBM_io_buffer_size = 8MB (default) for all patterns.
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(a) Pattern types 0: baseline (left), second set of hints (middle), and third set (right).
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(b) Pattern types 1: baseline (left), second set of hints (middle), and third set (right).
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(c) Pattern types 2–4, without hints, i.e., IBM_largeblock_io = false.
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(d) Pattern types 2–4, with third set of hints, i.e., IBM_largeblock_io = true.

Figure 7. The effect of hints on the ASCI White RS 6000/SP testbed at LLNL.
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line results are clearly better. The right diagram uses the third set of hints. For the
chunk sizes less than 1 MB, the hints are switched to IBM_largeblock_io= false and
IBM_io_buffer_size= 2MB. Comparing this set of hints with the baseline, we can
see that the bandwidth could be improved for all chunk sizes, except at writing of
non-wellformed chunks with 1MB plus 8 bytes. The second row (b) shows for pat-
tern types 1 (shared) that the hints give only a real advantage for 1 MB wellformed
chunks. Rows (c) and (d) show the other pattern types, row (c) with the baseline and
row (d) with the third set of hints.6The left diagram in rows (c) and (d) show pattern
types 2 (separated). The hint improves the bandwidth in all disciplines. Looking at
the segmented pattern type (3) in the middle diagrams one can see that the baseline
could be improved by the hint mainly for short chunk sizes and read operation. In
the collective case (type 4=seg-coll) in the right diagrams the baseline produces very
poor results while the benchmark with hints enabled runs with good bandwidth. The
curves clearly show that the third settings for the hints7 have produced the best results
for each chunk size.

The result for each pattern type and each access is summarized in a total bandwidth
shown in Table 2. The total bandwidth is defined as the total number of transferred
bytes divided by the total amount of time from opening till closing the file. The table
shows, that in all cases, the hint IBM_largeblock_io= true improves the baseline result
(IBM_largeblock_io= false). This means that some losses with IBM_largeblock_io=
true in the area of chunk sizes less than 1 MB are more than only compensated by the
advantages of this hint for larger chunk sizes. The weighted average in the last column
is done as an arithmetic mean with the double weighted scatter pattern according to
the time units used for the benchmarking. The average at the bottom row is done
according to the formula ((write+rewrite)/2+read)/2 to guarantee that the write and
rewrite patterns have not more weight than the read patterns. Looking at the 15 values
representing the 5 different pattern types and the 3 access methods, the table shows
that with the hint set to true, all bandwidth values are equal or larger than 197 MB/s.
In the baseline results, only three values have reached this value of 197 MB/s. With
this hint, the average line (bottom row) shows bandwidth values larger than 300 MB/s
for all pattern types.

With the third set of hints, again the result could be improved mainly for type 0.
For type 1, we can see a small reduction. The results for the second and third sets
also show, that the detailed values are not exactly reproducible and that there may be a
minor reduction of bandwidth due to the overhead for allowing hints to be switchable.

Table 3 shows that the b_eff_io value could be improved from 159.5 MB/s for the
baseline to 440.8 MB/s if the IBM_largeblock_io hint is enabled and to 451.7 MB/s

6. The second set is omitted, because it uses the same hints as in the third set, except that they
are not declared as switchable, and because it exhibits only minor differences from the results
of the third set.
7. IBM_largeblock_io is set to false and IBM_io_buffer_size is reduced to 2 MB for the
pattern types 0 (scatter) and 1 (shared) if the chunk size is less than 1 MB, otherwise
IBM_largeblock_io = true and IBM_io_buffer_size = 8 MB.
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with the third set of hints. Note, that in b_eff_io version 2.0, the definition of the final
b_eff_io had to be slightly modified to allow fast benchmarking without measuring all
rewrite patterns. In the new formula, b_eff_io is the geometric mean of the writing
and reading average. The reading average was not changed. The writing average is
the sum of the bandwidth values of all write pattern types plus the rewrite scatter
pattern type, divided by 6. This means, that in the reading and in the writing average,
the scatter pattern type is double weighted, in the first case by using the write and
the rewrite results, in the second case by counting the read-scatter result twice in the
average.8

This section has shown, that hints can significantly improve the parallel I/O band-
width. This benchmark can be used to test the hints and can assist the process of
defining an optimal default set of hints.

8. Future Work

We plan to use this benchmark to compare several additional systems. In a next
stage, cluster type supercomputers should be compared with Beowulf type systems,
built with off-the-shelf components and operated with a parallel filesystem, e.g., with
the Parallel Virtual File System (PVFS) [CAR 00].

Although [CRA 95] stated that “the majority of the request patterns are sequen-
tial”, we should examine whether random access patterns can be included into the
b_eff_io benchmark. The b_eff_io benchmark was mainly developed to benchmark
parallel I/O bandwidth, but it may be desirable to include also a shared data access,
i.e., reading the same data from disk into memory locations on several processes; this
pattern type is more like checking whether the optimization of the parallel MPI-I/O
can detect such a pattern and can implements it by a single reading from disk (e.g.,
divided into several portions accessed by several processes) and then broadcasting the
information to the other processes.9

The benchmarkwill also be enhanced to write an additional output that can be used
in the SKaMPI comparison page [REU 98]. This combination should allow to use the
same web interface for reporting I/O bandwidth (based on this b_eff_io) together with
communication bandwidth (based on SKaMPI benchmark or on the parallel effective
communication benchmark b_eff [RAB1, RAB 01]).

9. Conclusion

In this paper, we have described in detail b_eff_io, the parallel effective I/O band-
width benchmark. We used this benchmark to characterize the I/O performance of

8. The value according to b_eff_io version 1.x is computed in the lower right corner of Table 2.
9. This type of a shared access pattern should not be confused with the shared filepointer used
in pattern type 1.



Effective I/O Bandwidth Benchmark 23

common computing platforms. We have shown how this benchmark can provide both
detailed insight into the I/O performance of high-performance platforms and how this
data can be reduced to a single number averaging important information about that
system’s accumulated I/O bandwidth. We gave suggestions for interpreting and im-
proving the benchmark, and for testing the benchmark on one’s own system. We also
showed how the power of MPI-I/O file hints can be taken advantage of on a selective
basis in the benchmark. Although we have used the benchmark on small clusters with
Linux and other operating systems, we typically find that the parallel filesystems on
these clusters are not yet sufficiently advanced to support the full MPI-I/O standard ef-
ficiently. We expect that benchmarks such as the one described in this paper will help
to spur the design of these systems and that the situation should remedy itself soon.
The b_eff_io benchmark can be used together with the Linpack benchmark [TOP500]
and the effective communication bandwidth benchmark b_eff [KON 01] to measure
the balance of the accumulated computational speed (Linpack Rmax), the accumu-
lated communication bandwidth (b_eff) and the total I/O bandwidth (b_eff_io).
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